

Planetary Science Summer School Pasadena, CA

New Horizons in Systems Engineering

Craig Peterson August 16, 2001

Topics

- A few definitions
- The past
- The present
- The future
- A few conclusions

A Few Definitions

• System

- A collection of hardware, software, people, facilities, and procedures organized to accomplish some common objectives - *IEEE*
- A construct or collection of different elements that together produce results not obtainable by the elements alone. ... The value added by the system as a whole, beyond that contributed independently by the parts, is primarily created by the relationships among the parts; that is, how they are interconnected. E. Rechtin, Systems Architecting of Organizations, 1999

A Few Definitions

• System Engineering

- The process by which the design of a complex, multi-element system is technically coordinated and optimally matched, with constraints to the requirements on the system. In practice, System Engineering also assures that the delivered system is verified. - System Engineering at JPL

Architecting

- Generally synthesis based, insightful, and inductive - R. Echtin, Systems Architecting, 1991

Engineering

- Generally analysis-based, factual, logical, and deductive - ibid.

The Past

- Systems Engineering is a relatively new discipline
 - International Council On System Engineering (INCOSE) is only 10 years old.
- Traditionally focused on Requirements and Interface Documentation and (ultimately) Verification and Validation
 - some attempt at optimization of system design via trade studies (usually about a single point design)
 - frequently combined with System Architecting

The System Engineering Process

CONSTRAINTS

- 313 Project Systems Engineering Procedure
- Institutional Standards, Guidelines & Procedures

INPUTS

- Mission & Systems Design Commitment
- * Project Goals & Objectives
- * Level 1 Requirements
- * Science Requirements
- * Project Guidelines and Constraints
 - -Project Organization
 - -Single Point Failure Policies
 - -Mission Success Criteria/Priorities
 - -Schedules
 - -Resource Allocations
 - -Project Implementation Plan

Project Engineering **Activities**

- Develop Project Requirements, Policies & Guidelines
- Define Project Architecture
- Design Project
- Define and Control Interfaces
- Allocate, Track & Control Technical Resources
- Perform Technical Analyses
- Verity Project Design vs Requirements
- Validate Project Design
- Manage and Control Project Risk
- Manage Project Communication 8. Documentation
- Ensure Review of Project Design.
- Manage & Control Project Configuration

OUTPUTS

- Project System Architecture & Design descriptions
- " Level "2" Requirements
- * Requirements Allocated to Level 3"
- Project System Trade Study Results
- Level '2" Intertace Agreements. Listings & Descriptions
- * Project System Performance Regis
- PS Resource Estimates
- Risk & Margin Assessments
- Project V&V Requirements
- PS Development Plans
- Etc.

RESOURCES

- DNP processes & customer support
- Project System Engineering Course Materials
- DOOFS
 Peterson
 Section 313 Reference Library

The Past, continued

From JPL SE Course 1994

- Design Teams
- Mission Trade Studies
- System Contracting
- Design to Cost
- System Definition
- Requirements Definition
- Systems Analysis
- System Architecture
- Design Trade Studies

- Technical Margin Management
- Detailed Interface Definition
- System Reliability
- Design Issue Resolution
- Integration and Test
- PFR Support
- Operations Support
- SE for small spacecraft

The Present

- Faster Better Cheaper = Smaller
- More tools, more data, less time
- Concurrent engineering processes
- Collaborative engineering processes
- COTS Capability driven design
 - from large standard architectural elements to reusable components
- Risk as an element of trade studies
- Greater focus on handling exceptions
- Technology insertion

Tools and Concurrent Engineering

- Worst case analysis (point design)
- Model based design to capture dynamic system behavior
 - Generic modeling tools or discipline specific
 - COTS and custom built
- Requires operational scenario
- Loosely coupled using generic data base and interfaces
- Tightly coupled using standard data formats
 - at increasing levels of fidelity and precision

Analysis Data Flow Example

Power Antenna

Integration with Database

Mars Surface Operations Risk Analysis Framework

Risk Management

- What is severity of the [negative] consequences of specific failures?
- What is the likelihood [probability] of specific failures?
- The combination of the above is the risk related to a specific failure
 - usually treated semi-quantively (binned)
 - unacceptable risks must be addressed in the design and operations
- Reviewed and status'd just like any other critical resource

Exception Handling

- The system engineer is [usually] the first to know if the overall system design is in trouble
- Margin management = critical system resource allocation and management
 - mass and power, radiation dosage, valves, etc.
 - not just the value at a point in time, but includes design value trajectory extrapolation over time

Four R's

- Recover and Reallocate: can be done multiple times without serious consequences
- ReDesign: depends on the extent of the redesign
- ReScope: requires customer approval

Technology Insertion

- Short development cycles means technology cannot be developed as part of the project
- Technology development is inherently risky
 - in terms of both cost, schedule, and performance
- No spacecraft development manager wants to depend on someone outside of the organization to deliver the right stuff in a timely fashion
- Actually comes down to a trade of cost, benefit, and risk

The Future

- Integrated Modeling and Analysis
 - libraries of high fidelity component and subsystem models
 - allowing for faster iterations on design concepts
 - systems requirements to design to system test data flow
- Artificial Intelligence for global optimization of trade spaces, however
 - design models are inherently non-linear
 - iterating non-linear systems can easily result in chaotic behavior
 - will require development of mitigating techniques

A Few Conclusions

- System engineers are increasingly dependent on their people skills
 - communication and teamwork
- Increasing automation will not change that
 - except to give SE's more time to work the people issues
- A new job
 - making sure all the automated models are in sync with reality
- An old job
 - understanding the disciplines well enough at both an intuitive and explicit level to spot inconsistencies and miscommunications